3 research outputs found

    Electrical Properties of Epitaxial Ferroelectric Heterostructures

    Get PDF
    In the context of miniaturization of devices, ferroelectric materials are used as multifunctional materials for their well-known intrinsic properties, especially for the switching of polarization in an applied electric field. The high-quality epitaxial thin film structures are used for the possibility to study different effects as low dimensions, interface, strain and strain gradients on ferroelectric materials and other electric characteristics, also representing a possibility to obtain new phenomena and properties that can be used for development of new devices with different functionalities. This chapter is a summary of the ferroelectric and dielectric behaviour of epitaxial thin films of Pb(Zr,Ti)O3 (PZT) and BaTiO3 (BTO) obtained by pulsed laser deposition and the correlation with structural quality of the layers and with different electrostatic conditions induced either by electrodes or by the different interlayers. For this purpose in the first part, studies regarding the influence of the substrates and of different top electrodes are performed for Pb(Zr,Ti)O3 (PZT) 52/48. In the second part, we focused on artificial multiferroic structures from alternating layers of PZT 20/80 or BaTiO3 (BTO) as ferroelectric phase and CoFe2O4 (CFO) as magnetic material. We found that interface configuration and strain engineering could control ferroelectric hysteresis, the capacitance or the leakage current magnitude

    Magnetocaloric and Giant Magnetoresistance Effects in La-Ba-Mn-Ti-O Epitaxial Thin Films: Influence of Phase Transition and Magnetic Anisotropy

    No full text
    Magnetic perovskite films have promising properties for use in energy-efficient spintronic devices and magnetic refrigeration. Here, an epitaxial ferromagnetic La0.67Ba0.33Mn0.95Ti0.05O3 (LBMTO-5) thin film was grown on SrTiO3(001) single crystal substrate by pulsed laser deposition. High-resolution X-ray diffraction proved the high crystallinity of the film with tetragonal symmetry. The magnetic, magnetocaloric and magnetoresistance properties at different directions of the applied magnetic field with respect to the ab plane of the film were investigated. An in-plane uni-axial magnetic anisotropy was evidenced. The LBMTO-5 epilayer exhibits a second-order ferromagnetic-paramagnetic phase transition around 234 K together with a metal–semiconductor transition close to this Curie temperature (TC). The magnetic entropy variation under 5 T induction of a magnetic field applied parallel to the film surface reaches a maximum of 17.27 mJ/cm3 K. The relative cooling power is 1400 mJ/cm3 K (53% of the reference value reported for bulk Gd) for the same applied magnetic field. Giant magnetoresistance of about 82% under 5 T is obtained at a temperature close to TC. Defined as the difference between specific resistivity obtained under 5 T with the current flowing along the magnetic easy axis and the magnetic field oriented transversally to the current, parallel and perpendicular to the sample plane, respectively, the in-plane magneto-resistance anisotropy in 5 T is about 9% near the TC

    Accidental Impurities in Epitaxial Pb(Zr0.2Ti0.8)O3 Thin Films Grown by Pulsed Laser Deposition and Their Impact on the Macroscopic Electric Properties

    No full text
    Structural and electrical properties of epitaxial Pb(Zr0.2Ti0.8)O3 films grown by pulsed laser deposition from targets with different purities are investigated in this study. One target was produced in-house by using high purity precursor oxides (at least 99.99%), and the other target was a commercial product (99.9% purity). It was found that the out-of-plane lattice constant is about 0.15% larger and the a domains amount is lower for the film grown from the commercial target. The polarization value is slightly lower, the dielectric constant is larger, and the height of the potential barrier at the electrode interfaces is larger for the film deposited from the pure target. The differences are attributed to the accidental impurities, with a larger amount in the commercial target as revealed by composition analysis using inductive coupling plasma-mass spectrometry. The heterovalent impurities can act as donors or acceptors, modifying the electronic characteristics. Thus, mastering impurities is a prerequisite for obtaining reliable and reproducible properties and advancing towards all ferroelectric devices
    corecore